Outline

- Performance Evaluation
 - Introduction
 - Performance Debugging for Distributed Systems of Black Boxes
- Q&A
Introduction

- Exploiting Parallelism with the Distributed System (Compiler or Library)
 - Autoparallelization
 - Heterogeneity
 - Variable latencies
 - Manual Computation Decomposition and Load Balancing (Distributed Memory)
 - Architecture independence
 - Data Allocation (Distributed Memory)
 - Maximizing locality
 - Minimizing communication
Introduction (Cont’d)

- Parallel Execution of Components
 - Load matching
 - Communication optimization
- Overlap of Communication with Computation (Distributed Memory)
 - Large and variable latencies
- Reuse of More Data in Local Memories (Distributed Memory)
- Spreading Computation Evenly across Processors (Distributed Memory)
 - Minimizing communication

- Task Parallelism
- Latency Hiding
- Latency Reduction
- Load balancing
Introduction (Cont’d)

- Performance Tools
 - Goal
 - User’s identifying and overcoming performance bottlenecks
 - Functionalities
 - Measurement
 - Analysis
 - Visualization
 - Engineering/Tuning
 - Estimation/Prediction

Via Instrumentation
To Identify Bottlenecks
Introduction

- **Critical Path**
 - **Longest Path** through the DAG
 - Corresponding to the longest path

- **Critical Path of a Program**
 - **Longest CPU or Communication**
 - **Weighted Path** of the PAG

A Graph Consisting of Nodes Representing Significant Events, and Arcs Indicating the Ordering of Events within a Process or Synch Dependencies between Events.