Kyu haeng Lee

Some computer science issues in ubiquitous computing
Ubiquitous computing enhances computer use by making many computers available throughout the physical environment, while making them effectively *invisible* to the user.
Historical Origins and Trends

- Computers are becoming smaller and cheaper over time
 - Originally few computers many operators
 - Machines Expensive and Large
 - People (relatively) cheap
 - Trend toward more computers per person
 - Users may not be tech savvy
 - Even tech savvy users have limited time
 - Minimal intervention is required
- People don't want to be separated from their data
 - But spying on users upsets them
 - And can violate laws - security is important
 - Mobility and wireless access are critical.
Weiser is credited with popularizing ubiquitous computing.

- Ubiquitous computing is NOT:
 - Virtual reality
 - The real world provides input!
 - A PDA or PC called an intimate computer, which takes your attention to get it.

- Ubiquitous computing:
 - Supports a world of fully connected devices.
 - Ensures information is accessible everywhere.
 - Provides an intuitive interface, feels like you are doing it.

Challenges include:
- Wireless bandwidth: high-speed and highly multiplexed.
- Handling mobility.
- User Interface (window systems).
Computational Issues Back in 1993

- Weiser started work in 1988 and reported in 1993
 - Initially Virtual Reality (VR) seemed to have similar design approaches
 - VR gets the computer out of the way (supports intuitive interaction)
 - But VR has serious problems
 - Making sufficiently realistic simulations is expensive (and probably will be for decades)
 - VR locks users away from reality
 - Different from Assistants (e.g. PDA or Intelligent Agents) which work for you
 - Imagine a heavy rock being lifted by an assistant
 - Imagine being able to lift the rock yourself (effortlessly)
 - Informal Goal: Computing for every day life
Contents

- Design Goal
- Design Approach
- Wireless Networking Issues
- Interaction substrates
- Applications
- Privacy of Location
- Computational Issues
- Conclusion
Weiser’s Design Goals

- Ultimate Goal
 - Invisible technology
 - Integration of virtual and physical worlds throughout desks, rooms, buildings and life
- Used the construction of everyday things
Weiser’s Design Approach

- **Liveboard** - digital whiteboard
 - Used as shared display surfaces for collaborative work
 - Large ones
 - Replace physical bulletin boards, etc.

- **Pad** - Notebook-based device
 - Near me
 - Always ran XWindows
 - Used Pen interface

- **Tab** - Tiny information portal
 - Power is a major issue, cannot always change batteries
 - Used COTS Intel 8051 microcontroller
 - Always have one on you, wirelessly connected
 - Small touch-sensitive display screen

- Scatter around the office like post-it notes
Weiser’s Computational Issues

- **Low Power**
 - Reduce Power Consumption
 - \(\text{Power} = \text{Gate Capacitance} \times \text{Voltage} \times \text{Clock Frequency} \)
 - Reduced clocking frequency
 - Reduced voltage
- **Wireless**
 - Wireless data protocols were not widely deployed, still in the lab
 - Capable of accommodating hundreds of high-speed devices for every person
 - Near-field of the electromagnetic spectrum
- **Pen**
 - Pens for very large displays
 - Casual use, no training, naturalness, simultaneous multiple use
 - PARC devised a new infrared pen
Media Access Control (MAC) protocols

- Supports multiplexing broadcast media
- Chose MACA - avoids undetected collisions which garble signals.
 - MACA uses time division multiplexing
 - All nodes must have the same transmission radius
 - Nodes don't transmit when the channel is busy.
 - Message sizes are advertised (to let listeners know how long they need to wait).
 - When a node wants to transmit it sends a Request to Send N Bytes (RTS).
 - When the receiver detects the channel is clear it sends a Clear to Send (CTS) N Bytes
 - If a collision occurs all stations should back off the same amount.

Physical layer was challenging

- FCC regulations and technology drove them to 900 MHz bandwidth
- Low power reduces media contention and avoids FCC regulations
Weiser’s Wireless Networking Issues
2 of 2

- Wide Bandwidth Range
 - MACA needed fairness guarantees
 - Added a Not Clear to Send (NCTS) packet for bandwidth reservation by base stations.
- Real Time Multimedia Protocols
 - QoS needed for streaming multimedia
 - May need higher layer
- Packet Routing
 - Need base station load balancing
 - IP not designed to support mobility
 - However, it is dominant
 - OSI ISO 8473 Connectionless Network Protocol (CLNP) has some mobility support, but is less popular
 - Virtual IP, Mobile IP
Weiser’s Interaction Substrates

- Interaction Substrate is what we call the UI Toolkit
 - Windowed Mouse Point and click (WiMP) are still dominant
 - XWindows designed for networked use
 - It is difficult for windows to move once instantiated at a given X server
 - A new X toolkit that facilitates windows migration
 - Applications need not be aware that moved from one screen to another
 - Bandwidth can vary from Kb/sec to Gb/sec, and with window migration a single application may have to dynamically adjust to bandwidth over time
 - To solve this problem, X-window use at lower bandwidth
 - Display areas vary between physical devices
 - Pads often have tiny interaction areas
 - Liveboards have huge interaction areas
 - Input devices depend on size
 - Pads need pens, since keyboards are too big.
 - Pens needed special script since general handwriting mechanism is too hard
Applications

- Applications
 - Locating People
 - Data acquired from:
 - Log ins to workstations/terminals
 - An Active badge system
 - Useful for
 - Automatic call forwarding
 - Shared Drawing Tools
 - Shared Drawing
 - Data Representation
 - Object based
 - Bit mapped
 - UI Issues
 - How to handle multiple cursors?
 - Use gestures or not?
 - Use an ink based or character recognition model of pen input?
Privacy of Location

- Cellular system need to know the location of devices and their use in order to properly route information
- Solution
 - Central DB of location
 - Privacy controls can be centralized
 - But one break-in there reveals all
 - Transmission of the location information to a central site
 - Centrality is unlikely to scale worldwide
 - Storing information about each person at that person’s PC
 - Programs must query the PC, and proceed through whatever security measures the user has chosen to install
Computational Issues

- Cache Coherence Problem
 - Classical distributed computing problem
 - Consider multiprocessor machine with a single address space
 - If 2 processors have the same location cached, how do they make sure they see the same value?
- How close to the theoretical optimum can on-line cache coherence algorithms get in practice?
 - Especially if pages can be compressed.
Conclusion

- Tabs, Pads, Boards
- Ubicomp is likely to provide a framework for interesting and productive work for many more years
- Have much to learn about the details