Distributed Information Processing

1st Lecture

Eom, Hyeonsang (엄현상)
Department of Computer Science & Engineering
Seoul National University
Outline

- Introduction to Distributed Systems
- Clock
- Q&A
Distributed Systems

- Systems Where Components of Networked Computers Communicate and Coordinate Their Actions via Message Passing
 - Concurrency
 - No Global Clock
 - Independent Failures

- Systems Consisting of Collections of Spatially Separated Processes Communicating by Exchanging Messages
 - Sharing States
 - Providing Services
 - Having Global Properties
 - Heterogeneity
 - Unreliable, Insecure, Costly Comm.
 - Scalability
 - Autonomy
Different-Scale Systems

- Systems of Increasing Scale & Decreasing Integration

<table>
<thead>
<tr>
<th>System Type</th>
<th>Heterogeneity, Geographic Distribution</th>
<th>Lack of Centralized Control</th>
<th>Exemplar Computational Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>End (Single) System</td>
<td></td>
<td></td>
<td>Multithreading</td>
</tr>
<tr>
<td>Cluster</td>
<td></td>
<td></td>
<td>Distributed Shared Memory</td>
</tr>
<tr>
<td>Intranet</td>
<td>○</td>
<td></td>
<td>Manager/Worker</td>
</tr>
<tr>
<td>Internet</td>
<td>○</td>
<td>○</td>
<td>Collaborative Systems</td>
</tr>
</tbody>
</table>
Example of Distributed Systems

A typical portion of the Internet

desktop computer:
server:
network link:
Distributed System Goals

- Accessibility
 - As Connectivity and Sharing Increases, Security and Privacy Matter

- Distribution Transparency
 - Access: Regarding Data Representation & Access Method
 - Location: Regarding Resource Location
 - Migration: Regarding Resource Movement
 - Relocation: Regarding Movement in Use
 - Replication: Regarding Resource Replication
Distributed System Goals (Cont’d)

- Distribution Transparency (Cont’d)
 - Concurrency: Regarding Competitive Sharing
 - Failure: Regarding Resource Failure and Recovery

Performance & Comprehensibility Issues

- Openness:
 - Following Standard Rules That Describe the Syntax and Semantics of Services
 - Interoperability
Distributed System Goals (Cont’d)

- **Openness (Cont’d)**
 - Portability
 - Extensibility

- **Scalability**
 - Limitations
 - Centralized services
 - Centralized data
 - Centralized algorithms
 - Synchronous communication

Separating Policy from Mechanism
Distributed System Goals (Cont’d)

- **Scalability (Cont’d)**
 - Decentralized Characteristics
 - No local maintenance of global system state
 - Decision making based only on local information
 - Localized Failure
 - No global clock
 - Scaling Techniques
 - Asynchronous communication
 - Client and Server load balancing
 - Distribution: e.g., DNS & WWW
 - Replication & caching
Distributed System Goals (Cont’d)

- Pitfalls
 - Network Reliability
 - Network Security
 - Network Homogeneity
 - Static Topology
 - Zero Latency
 - Infinite Bandwidth
 - Zero Transport Cost
 - One Administrator
Technical Goals

- Heterogeneity
 - H/W, S/W, and Data Components
- Varying Component Size and Extent
- Network Connection
- Uniform Set of Services
- Certain Global Properties
Distributed Computing Approaches

- Grid
 - Addressing Infrastructure
- Peer-to-Peer
 - Addressing Failure
 - Self-organizing into network topologies
 - w/o a Global Server or Authority
Distributed System Types

- **Distributed Computing Systems**
 - Cluster Computing Systems
 - Collection of computers connected in a high-speed network
 - Grid Computing Systems
 - Federation of computer systems possibly in different administrative domains

- **Distributed Information Systems**
 - Transaction Processing Systems
 - Atomic, Consistent, Isolated, and Durable Transaction
Distributed System Types (Cont’d)

Distributed Information Systems (Cont’d)

- Enterprise Application Integration
 - Communicating Independent Components
 - Remote procedure call
 - Remote method invocation
 - Message-oriented middleware w/ logical contact points
 - Message queuing model
 - Message brokers as application-level gateway w/ subscription & publication

Distributed Pervasive Systems

- Home Systems Possibly w/ UPnP
- Electronic Health Care Systems in a BAN
- Sensor Networks
Issues

- Problem
 - No Global Clock

- Issues
 - How to Determine an Order of Events
 - How to Determine Global States
 - Consistency
Clock

Skew

- Difference between the Readings of Any Two Clocks

Skew between computer clocks in a distributed system

Drift

- Divergence of Clocks due to Counting Times at Different Rates
UTC (Coordinated Universal Time)

- **International Time Standard**
 - Formerly, Greenwich Mean Time or GMT
 - Zero hours UTC: midnight Greenwich (0 degrees longitude)
 - Based on Atomic Time (Drift Rate: $1/10^{13}$ Seconds/Second)
 - Signals synchronized and broadcast regularly
 - From land-based radio stations and satellites
Synchronous vs Asynchronous

- **Synchronous Systems**
 - Known Bounds
 - Drift rate of clocks
 - Max message transmission delay
 - Time to execute each step of a process

- **Asynchronous Systems**
 - No Bounds