Distributed Information Processing

16th Lecture

Eom, Hyeonsang (엄현상)
Department of Computer Science & Engineering
Seoul National University

©Copyrights 2016 Eom, Hyeonsang All Rights Reserved
Outline

- Embedded Software/Systems Research
 - Building the Foundation
- Context-Aware Mobile Computing Research
 - Introduction
 - Survey
- Q&A
Building the Foundation [Lee05]

Embedded Software Issues

- Resource Constraints Not at the Heart
- Time Omitted in Abstractions
- Inherent Concurrency
- Rarely Used OO Techniques
- Avoided Memory Hierarchy & Dynamic Memory Management
- Not Much Attention Paid to Non-Functional Properties
 - Time, security, fault tolerance, power consumption, memory management, etc.
Building the Foundation (Cont’d)

- Embedded Software Issues
 - “Hard to Guarantee” Real Time
 - Indirect Timing Specification
 - Avoided concurrency & benchmarking
 - Prioritization
 - Progression of Time Ignored by Abstractions
 - Incomprehensible Concurrency
 - Semaphores, Mutexes, Rendezvous, etc.
 - Unreliability
 - Module Dependency
 - Lack of Compositionality of Core Abstractions

Because Timing Properties Are Not Part of Program Specs
Building the Foundation (Cont’d)

- Actor-Oriented Models as Better Concurrency Models
 - Key Idea: Flow of Streams of Data, Not Flow of Control
 - Ports as the interface to a component
 - Concurrency of components
 - Interpreting & Specializing the Idea
 - Ptolemy II (a Lab)
 - Using a Visual Editor
 - Block diagrams as syntax & various semantics defined by “directors” with which diagrams are annotated

E.g., CSP (Communicating Sequential Processes) and DE (Discrete Events) Modeling Sensor Networks
Context Is Key [Coutaz05]

- **Introduction to Context**
 - Part of a Process of Interacting with an Ever-Changing Environment Composed of Reconfigurable, Migratory, Distributed, & Multiscale Resources
 - Continuity
 - Ubiquity
 - Continuity
 - Ubiquity

- **Context Issues**
 - Part of a Process
 - Holistic Treatment
 - Mismatch between the System’s Interaction Model and Users’ Mental System Model

Structured, Flexible Approach to Challenges of Large-Scale Ubiquitous Computing

Need for New Interaction Techniques
Context Is Key (Cont’d)

Framework for Context-Aware Systems

- Ontological Framework
 - Context as an information space that can be modeled as a directed state graph, where each node denotes a context, and edges denote the conditions for change in context

- Runtime Infrastructure Model
 - Sensing: numeric observables
 - Perception: symbolic observables
 - Situation and context identification
 - Exploitation

- Adaptation & Development

Automatic Acquisition of Situation & Context, and Ultimately the Acquisition of the Entities, Roles, and Relations from Which Situations & Contexts Emerge
References
