Distributed Information Processing

20th Lecture

Eom, Hyeonsang (엄현상)
Department of Computer Science & Engineering
Seoul National University
Outline

- DRM (Digital Rights Management)
 - Introduction
 - PKI and Certificate Chain
 - DRM for Content Distribution
 - OMA (Open Mobile Alliance) DRM

- Q&A
Secure Information Transfer

How Can User A Send Information Securely to User B?

- What does this mean?
Basic Security Concepts

- **Identification (Against All Entities)**
 - Process of Recognizing a Particular Individual Using Presented Information

- **Authentication (Against a Previously Identified Entity)**
 - Process of Verifying Certain Information

- **Authorization**
 - Process of Determining What You Are Allowed to Do
Basic Security Concepts (Cont’d)

- **Integrity**
 - Process of Ensuring That Information Is Unchanged

- **Confidentiality**
 - Keeping Information Secret

- **Non-Repudiation**
 - Not Being Able to Deny Something
Cryptography Basics

Definition
- Science of Applying Mathematics to Increase Security

Symmetric Cryptographic Algorithms
- Taking Clear Text as Input Outputting the Cipher Text Using a Symmetric Key, and Reversing This Process
 - DES (Data Encryption Standard)
 - 3-DES
 - RC2, RC5, RC6
 - Rijndael (or AES, Advanced Encryption Standard)
Cryptography Basics (Cont’d)

- **Asymmetric Cryptographic Algorithms**
 - Taking Clear Text as Input Outputting the Cipher Text Using a Public/Private Key, and Reversing this Process Using the Matching Private/Public (Respectively) Key
 - DH (Diffie-Hellman)
 - RSA (Rivest, Shamir, and Adleman at MIT)
 - ECC (Elliptic Curve Cryptography)

PKI (Public Key Infrastructure): the Public/Private Key-Based Encryption Framework That Permits Deploying Security Services
Cryptography Basics (Cont’d)

Illustrations: Asymmetric Cryptography

[Diagram showing asymmetrical encryption and decryption processes]
Cryptography Basics (Cont’d)

Symmetric vs Asymmetric Cryptographic Algorithms

- Advantages of Asymmetric Algorithms
 - Superior key management and scaling
 - Unnecessary prior relationship
 - Private-key-holder only operations (as a basis for digital signatures)

- Disadvantages of Asymmetric Algorithms
 - Possibly 10 to 100 times slower execution
 - Expansion of the ciphertext
Cryptography Basics (Cont’d)

- Hash Algorithms
 - Definition
 - Taking a chunk of data and compressing it into a digest (or fingerprint) of the data
 - Examples
 - MD2 (128-bit digest; best for 8-bit processors)
 - MD5 (128-bit digest; best for 32-bit processors)
 - SHA-1 (160-bit digest; best for high-end processors)
 - Properties
 - No backward recovery
 - No information about the initial clear text
 - No backward creation/discovery
Digital Signatures

- **Data Encrypted with a Private Key**
 - Technique for Authentication and Non-Repudiation
 - If a public key properly decrypts data, then it must have been encrypted with the private key

Verifying Integrity, too
Certificate

- Notarized Association between the Particular User with the Particular Public Key
Illustration: Public Key Infrastructure

User A

Certificate Authority

Send Certificate Request Information (Public Key Included)

Verify Identification

Issue Certificate
- Signed w/ CA’s Private Key

Request Certificate
- Download Program to Generate Key Pair
- Input Reference No. & License Code
- Create (Private Key, Public Key) Pair
- Send Certificate Request Information (Public Key Included)

Certificate Authority

Generate Digital Signature

Send Digital Document + Digital Signature + Certificate

Save Certificate on the Storage (HDD, USB, etc)
Encrypt / Save Private Key Using Password

Registration Authority

Submit Request Form / ID

Convey Reference No. & License Code

Verify Identification

Send Identification Information to CA

Send Reference No. & License Code

User B

Directory

Exchange Certificate and CRL (Certificate Revocation List)

Request Certificate of CA / CRL

Verify CRL

Verify Certificate of User A

Verify Digital Signature of User A
X.509 Certificate

- **X.509 Specification**
 - Information Contained in a Certificate, and Its Format
- **Components**
 - **Version**
 - Indicator of Version 1, 2, or 3
 - **Serial Number**
 - Unique Identifying Number for This Certificate
 - **Signature**
 - Algorithm Identifier of the Digital Signature Algorithm
 - **Issuer**
 - X.500 Name of the Issuing CA
 - **Validity**
 - Start and Expiration Dates and Times of the Certificate
 - **Subject**
 - X.500 Name of the Holder of the Private Key (Subscriber)
 - **Subject Public-Key Information**
 - Value of the Public-Key for the Subject Together with an Identifier of the Algorithm with Which This Public-Key to Be Used
Security Holes in PKI

- Fabricated Identification Card
- Illegal Copy of Certificate
- Hacking Program
 - E.g. Key Logger Program
 - Hacker can get id/password, account no, security card no, and password for encrypting private key
 - Hacker can disguise himself/herself as a user

The Main Reasons for These Security Holes Are Unsafe Storage, Operating System, and Character-Based Protection Mechanism.

- Security-Enabled Storage Medium, OS Security Patch, and Biometrics
Certificate Chain

- **X.509 Standard Model for Setting Up a Hierarchy of CAs**
 - In Large Organizations, It May Be Appropriate to Delegate the Responsibility for Issuing Certificates to Several Different Certificate Authorities

- **Ordered List of Certificates Containing an End-User or Subscriber Certificate and Its Certificate Authority Certificates**
 - Each Certificate Is Followed by the Certificate of Its Issuer
 - Each Certificate Contains the Name (DN) of That Certificate's Issuer
 - Same as the subject name of the next certificate in the chain
 - Each Certificate Is Signed with the Private Key of Its Issuer
 - Signature verifiable with the public key in the issuer's certificate, which is the next certificate in the chain
Certificate Chain Example

- Check Validity Period
- Verify That This Is Signed by Engineering CA
- Since Engineering CA Is Not Trusted,
 Check the Next Certificate
Applying DRM to Protect Content

- Distributing DRM Protected Content
 - Content Issuer’s Encrypting the Content and Packaging in DRM Content Format
 - Rights Issuer’s Assigning Permissions and Constraints for Content
 - User’s Receiving Content and Rights
 - User’s Sending the Protected Content to a Friend with OMA DRM Enabled Devices
 - Friend’s Purchasing the Permission to Consume the Content
Example of OMA DRM Deployment

1. Browse to Website and Download Protected Content
2. Transfer Content Encryption Key
3. Purchase "Rights" and Establish Trust
4. Deliver Protected Rights Object
5. Super-Distribute Content to a Friend
6. Establish Trust; Purchase and Deliver Rights Object

- Content Issuer
- Rights Issuer
- Your Device
- Your Friend’s Phone

Share Content within Your Domain
References

- [OMA] Open Mobile Alliance, www.openmobiilealliance.org