Outline

- Architectures and Algorithms
 - Matching the Architecture to the Algorithm
- Distributed Processing
 - Performance
 - Ability
 - Behavioral Principles
- Q&A
Principal Architectural Models

Client-Server

- Client Processes Interacting w/ Server Processes to Access Their Shared Resources Managed in a Centralized Manner
 - E.g., DNS Servers, Web Search Engines

Not Scalable
Principal Architectural Models (Cont’d)

Peer-to-Peer

- Processes Interacting Cooperatively to Access Their Shared Resources Collectively-Managed in a Distributed Fashion

 - E.g., Napster

Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4 © Pearson Education 2005
Flynn’s Model for Architectures

- SISD (Single Instruction Stream, Single Data Stream)
 - Uniprocessor

- SIMD (SI, Multiple Data Streams)
 - Single Instruction Memory & Control Processor w/ Memory per Processor

- MISD (Multiple Instruction Streams, SD)

- MIMD
 - Centralized Shared-Memory Architectures
 - Distributed-Memory Architectures

- E.g., UMA, Uniform Memory Access
- E.g., NUMA, Non-Uniform Memory Access
MIMD Architectures

- E.g., SMP (Symmetric Multiprocessing)
 - Problem: Poor Scalability

- E.g., MPP (Massively Parallel Processing)
 - Problem: Explicit Data Distribution

- E.g., NUMA

- Processor
 - Local memory
 - Interconnection
 - Memory
Characterizing the Algorithm [Kleinrock85]

To Exploit Its Potential for Concurrency at Different Granularity Levels:
- Job
- Task
- Process
- Instruction
- Register Transfer
- Logic Device

E.g., by Using a Graph Model
Matching the Architecture to the Algorithm [Kleinrock85]

Considerations Regarding the Graph Model

- Partitioning
 - Deciding granularity levels
 - Grouping

- Scheduling
 - Assigning processors and memory modules

- Memory Access

- Interprocessor Communication

- Synchronization
 - Preserving dependency
Matching the Architecture to the Algorithm [Kleinrock85]

- Balance and Tradeoff among Communication, Processing, and Storage
 - Trading Processing for Communication
 - E.g., data compression prior to transmission
 - Trading Storage for Processing
 - E.g., storing a list of computational results
 - Trading Storage for Communication
 - E.g., storing data from a previous communication

- Failure Detection & Recovery
Parallel-Processing Performance

Speedup (S)

- Serial Computation Time \(T_s \) over Parallel Execution Time \(T_p \) \((S = T_s / T_p) \)
 - \(T_p = T\text{COMP}_p + T\text{COMM}_p \)
 - \(T\text{COMP}_p = T_s (1 - A) / P + T_s A \), where \(A \) is the serial portion
 - E.g., If \(T_s = 100 \), \(A = 0.2 \), & \(P = 10 \), then \(T\text{COMP}_p = 28 \)
 - \(T_p = T_s (1 - A) / P + T_s A \), assuming that \(T\text{COMM}_p = 0 \)
 - \(S = T_s / T_p = T_s / (T\text{COMP}_p + T\text{COMM}_p) = 1 / \{A + (1 - A) / P\} \), assuming that \(T\text{COMM}_p = 0 \)
 - \(1 \leq S \leq P \)
Ability of Distributed Processing

- Possibly Producing the Best Result

- Greedy Solutions with Unexpected Results:
 E.g., Goore Game [Kleinrock 85] (Repeating Actions Preferentially by Trial and Error)

- Many Players Being Asked to Vote YES or NO in Each Interval
 - Acting with sufficient memory in a probabilistic fashion
 - With each unaware of the others

- Referee Rewarding Each Member Independently with a Probability Given by $f(p)$ Unknown to It
 - p: fraction of the player set that votes YES

![Graph showing $f(p)$]

- We May Be Able to Explain How the Colony of Ants Perform Its Tasks

Exactly 20% of the Players Will Vote YES with Probability 1
Ability of Distributed Processing (Cont’d)

- Possibly Producing a Globally Suboptimal Solution

- Most Greedy Solutions: E.g., Prisoner’s Dilemma (Predicting the Behavior of the Other Players)
 - Two Men Being Held in Separate Cells for a Crime They Did
 - District Attorney w/ Hard Evidence Just for One-Year Penalty
 - Making the following offer to each prisoner:
 - Free if confessing w/ your partner remaining silent
 - In jail for 20 years in the opposite case
 - Five years in jail for each if both confess

Dilemma: Each Is Tempted to Confess, But If Both Confess, It Will Be Worse
Behavioral Principles [Kleinrock85]

- Developing innovative architectures for parallel processing
- Providing better languages and algorithms for specification of concurrency
- More expressive models of computation
- Matching the architecture to the algorithm
- Understanding the trade-off among communication, processing, and storage
- Evaluation of the speedup factor for classes of algorithms and architectures
- Evaluation of the cost-effectiveness of distributed-processing networks
- Study of distributed algorithms in networks
- Investigation of how loosely coupled self-organizing automata can demonstrate expedient behavior
- Development of a macroscopic theory of distributed systems
- Understanding how to average over algorithms, architectures, and topologies to provide meaningful measures of system performance