Secure Routing in Wireless Sensor Networks: Attacks and Countermeasures

Chris Karlof and David Wagner

Presenters: Hyowon Lee & Yongbae Bang
Contents

- Introduction
- Background
- Sensor Networks vs Ad-Hoc Wireless Networks
- Problem Statement
- Attacks on Sensor Network Routing
 - General Discussion
 - Specific Routing Protocol
- Countermeasures
- Conclusion
Introduction

- **Sensor networks**
 - Heterogeneous system with tiny sensors and actuators
 - Consist of many low-power, low-cost nodes at fixed location
 - Route messages using multi-hop wireless communication

- **Current routing protocols in sensor networks**
 - Optimize for the limited capabilities of the nodes and application specific nature of the networks
 - Do not design with security as a goal

- **Secure routing protocols in sensor networks**
 - Many SNs are deployed in open, physically insecure, or hostile environments
 - Wireless communication itself is also insecure
 - Routing protocols in SN must be designed with security in mind
Introduction

- Contributions
 - Propose threat models and security goals for secure routing in wireless sensor networks
 - Introduce two new attacks against sensor networks
 - Sinkhole attacks & HELLO floods
 - Discuss the relevance of attacks of the ad-hoc wireless networks and P2P networks to sensor networks
 - Wormhole attack & Sybil attack
 - Analyze the security of major routing protocols and energy conserving topology maintenance algorithms for sensor networks
 - Suggest a set of countermeasures and considerations for the design of secure routing protocols
Background

- SNs have one or more base stations (sinks)
 - Centralized control point: gateway, data processing and storage
 - Request steady stream of data to satisfy a query
 - Aggregation points are used for reducing the total message sent and saving energy
 - Forward an aggregate of sensor readings from nodes to a base station
 - Chosen dynamically

- SNs are resource constrained
 - Low power, low bandwidth, little computational power
 - Security challenge
 - Public key cryptography is expensive to use in SN
 - Symmetric key cyphers can be used sparingly
 - Secure routing mechanisms in ad-hoc networks are inadequate for SN
Sensor Networks vs Ad-hoc Wireless Networks

- **Similarity**
 - Both support multi-hop networking
 - Security issues in both networks are similar

- **Differences**
 - SNs have a more specialized communication pattern
 - Many-to-one: multiple sensors to a base station
 - One-to-many: single base station to multiple sensors
 - Local communication: discover and coordinate neighboring nodes
 - SNs are more resource constrained than ad-hoc networks
 - Public key cryptography is not feasible in SN
 - Higher level of trust relationships in SN
 - To reduce the network traffic and save energy
Problem Statement

- **Network assumptions**
 - Radio links are insecure
 - Eavesdrop radio transmissions, inject bits in the channel, replay previous packets
 - Attacker can deploy a few malicious nodes with similar capabilities
 - Attacker may have control of more than one node
 - Malicious nodes may collude to attack
 - No tamper resistant
 - Attacker can extract all key materials from the node
Problem Statement

- **Trust requirements**
 - Compromise of base stations can render the entire network useless
 - Base stations are trustworthy (can be trusted and assumed to behave correctly)
 - Most routing protocols trust messages from base stations
 - Aggregation points may become compromised
 - Aggregation points is not necessarily trustworthy
Problem Statement

- **Threat models**
 - Based on capability
 - Mote-class attackers
 - Access fewer nodes with similar capabilities
 - Limited damage
 - Laptop-class attackers
 - Access to more powerful nodes
 - Jam the entire sensor network, eavesdrop on an entire network
 - Based on location of attacker
 - Outsider attackers
 - Attacker has no special access to sensor network
 - Insider attackers
 - Attacker is an authorized participant in the sensor network
Problem Statement

- **Security goals**
 - Integrity, Authenticity, Availability – Ideal routing protocol

- **Protection against eavesdropping**
 - Confidentiality should be provided through link layer encryption
 - Consider eavesdropping achieved by the cloning of a data flow

- **Protection against the replay of data packets**
 - Can be fully detected at the application layer

- **Presence of insider attackers**
 - Goals are not fully achieved
 - Graceful degradation: degrade no faster than a ratio of compromised nodes to total nodes
Attacks on Sensor Network Routing

- Spoofed, altered, or replayed routing information
- Selective forwarding
- Sinkhole attacks
- Sybil attacks
- Wormholes
- HELLO flood attacks
- Acknowledgement spoofing

Difference between attacks
- Manipulate user data directly
- Affect the underlying routing topology
Spoofed, Altered, or Replayed Routing Information

- Directly spoofing routing information exchanged between nodes
- Create routing loops, generate false error messages, partition network, increase end-to-end latency, and so on
Selective Forwarding

- Malicious nodes refuse to forward certain messages
- Selectively forwards packets or drops packets

Diagram:
- Node A (Base Station)
- Node B
- Node C (Drop)
- Node D
- Node E
Sinkhole Attacks

- Create a metaphorical sinkhole with the adversary at the center
- Make a compromised node look attractive to surrounding nodes
 - Laptop-class adversary with high quality route to a base station
 - Almost all traffic is directed to the fake sinkhole

![Diagram showing the sinkhole attack network with nodes A, B, C, D, E, F, and G. Node C is marked as the sinkhole.]
Sybil Attacks

- Single node presents multiple identities to other nodes in the network
- Significant threat to geographic routing protocol
 - An adversary node can locate on more than one place at once

Node A

Node B

Node C

Node C1 (Sybil node)

Node C2 (Sybil node)

Node C3 (Sybil node)

Fake coordinates of sybil nodes
Wormholes

- Tunnels messages over a low latency link
- Disrupt routing by creating a wormhole close to a base station
- Convince two distant nodes that they are neighbors
HELLO Flood Attacks

- Laptop-class attacker sends or replays HELLO packet with more energy to convince every node in the network that the adversary is a neighbor.

- Protocols with information exchange between nodes for topology maintenance or flow control is subject to this attack.

![Diagram showing the interactions between nodes A, B, C, D, E, F, and G in a network, with Node A sending a broadcast, Node B failing to send, and Node E receiving the broadcast.](image-url)
Acknowledgment Spoofing

- Spoof link layer acknowledgments for overheard packets
- Convince the sender that a weak link is strong or a dead node is alive
 - Can use selective forward attack by encouraging the target node to transmit packets on a weak or dead link
Attacks on Specific Sensor Network Protocols

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Insecure?</th>
<th>Relevant Attacks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tiny OS beaconing</td>
<td>Yes</td>
<td>B, SF, SH, SY, W, H</td>
</tr>
<tr>
<td>Directed Diffusion</td>
<td>Yes</td>
<td>B, SF, SH, SY, W, H</td>
</tr>
<tr>
<td>Geographic Routing</td>
<td>Yes</td>
<td>B, SF, SY</td>
</tr>
<tr>
<td>Minimum Cost Forwarding</td>
<td>Yes</td>
<td>B, SF, SH, W, H</td>
</tr>
<tr>
<td>Clustering based Protocols (LEACH, TEEN, PEGASIS)</td>
<td>Yes</td>
<td>SF, H</td>
</tr>
<tr>
<td>Rumor Routing</td>
<td>Yes</td>
<td>B, SF, SH, SY, W</td>
</tr>
<tr>
<td>Energy Conserving Topology Maintenance</td>
<td>Yes</td>
<td>B, SY, H</td>
</tr>
</tbody>
</table>

Abbreviations of Attacks
- B: Bogus routing information
- SF: Selective forwarding
- SH: Sinkholes
- SA: Sybil Attack
- W: Wormholes
- H: HELLO floods
TinyOS Beaconing

- A lightweight, event-driven operating system for sensor networks
- Widely used in research due to its simplicity

Beaconing Algorithm
- A breadth first spanning tree
TinyOS Beaconing - Attack

- It is highly susceptible to attack
- Attacks
 - Fake base station
 - A combined wormhole/sinkhole attack
 - HELLO flood attack
 - Routing Loop
TinyOS Beaconsting - Attack - Fake Base Station

- The routing updates are not authenticated
 - Any nodes can be a base station, the destination of all traffic in the network
TinyOS Beaconing - Attack - Wormhole/Sinkhole Attack

- Even if authenticated, laptop-class adversary can do
 - Create wormhole to make a sinkhole
- Enable a potent selective forwarding attack

Node A
Base Station

Node B
Parent: A

Node C
Parent: J

Node D
Parent: J

Node E
Parent: J

Node G
Parent: H

Node F
Parent: J

Node H
Parent: A

Node I
Parent: A

Sinkhole

Wormhole
TinyOS Beaconing - Attack - HELLO Flood Attack

- Laptop-class adversary with a powerful transmitter
 - Broadcast a routing update loud to the entire network
 - All the message will be lost

- Hard to recover
 - Even though a node realizes its parent is not in its range, each of its neighbors likely marked the adversary as its parent
TinyOS Beaconing - Attack - Routing Loop

- Mote-class adversary
- Spoof routing updates to make node B and C mark each other as parent
- The message from either B or C will be forever forwarded in the loop
Directed Diffusion

- Data-centric communication paradigm for drawing information out of a sensor network

- Interest Dissemination
 - Base stations flood interests for named data
 - They set up gradients within the network designed to draw events
 - Nodes satisfy the interest disseminate information along the reverse path of interest propagation

- Data rate of link reinforcement
 - Positive when the base station starts receiving events
 - Negative

- Multipath variant of directed diffusion is proposed
Directed Diffusion - Example

Altitude > 90m Temperature?
Interval: 500ms

Base Station
Node

A

Altitude: 10m Temperature: 30℃
Interval: 1000ms

F

Altitude: 10m Temperature: 20℃
Interval: 500ms

B

Altitude: 70m Temperature: 18℃
Interval: 500ms

C

Altitude: 100m Temperature: 10℃
Interval: 1000ms

D

Altitude: 40m Temperature: 15℃
Interval: 1000ms

E

Altitude: 40m Temperature: 20℃
Interval: 500ms

G

Altitude: 1000ms

Interval: 500ms

Interval: 1000ms

Interval: 500ms
Directed Diffusion - Attack

- **Suppression**
 - DoS: Spoof negative reinforcements to suppress a flow

- **Cloning**
 - Eavesdropping: Duplicate same interest to listen

- **Path Influence**
 - Modify any flow of events propagates through the adversary

- **Selective Forwarding and Data Tampering**
 - If adversary in the path, it can modify and selectively forward packets

- **Wormhole attack**
 - To make data flows away from the base station and make sinkhole

- **Sybil attack**
 - For the multipath version
Geographic Routing

- To efficiently disseminate queries, the geometric location data is used

- **Greedy Perimeter Stateless Routing (GPSR)**
 - Routing each packet to the neighbor closest to the destination
 - Uneven energy consumption due to the fixed path

- **Geographic and Energy Aware Routing (GEAR)**
 - Weighting the choice of the next hop by both remaining energy and distance from the target
Geographic Routing - Attack - Sybil Attack

- Fake location on the path to intercept the event
- Report maximum energy to make it always be selected

- Selective forwarding attack can be mounted
In GPSR, routing loop can be made without active participation in packet forwarding.

Fake location of C makes the packet will be forwarded forever between B and C.
Minimum Cost Forwarding

- Every node maintains the cost of each link and its minimum total cost to the base station
 - Distributed shortest-paths algorithm
- Cost: hop count, energy, latency, loss, etc.
Minimum Cost Forwarding - Attack

- Sinkhole attack: adversary can advertise cost zero
- Wormhole attack: to synchronize the base station-initiated cost updates
- HELLO flood attack: disable entire network by advertising cost zero to all nodes
LEACH: Low-Energy Adaptive Clustering Hierarchy

- When every node can reach the base station directly, cluster the network to reduce the power consumption.
LEACH - Attack

- Nodes choose the largest signal power
- HELLO flood attack
 - A powerful advertisement to all nodes
 - Every nodes choose the adversary as its cluster-head
 - If some data reached, the adversary can selectively forward
 - Others that can not reach the adversary → disabled
- Selective forwarding attack
 - Using small number of nodes with same technique
- Sybil attack
 - To counter the refusing to use the same cluster-head
- Other cluster protocols (TEEN, PEGASIS) are also susceptible
Rumor Routing

- A probabilistic protocol for matching queries with data events
- Offers an energy-efficient alternative when the high cost of flooding cannot be justified
- An agent is sent to find the way
 - When sensor observe some events
 - When base station wants to disseminate a query

- Agent carries information
 - a list of events, the next hop of paths to those events, the corresponding hop counts of those paths, TTL, a list of previously visited nodes and those nodes’ neighbors
Rumor Routing - Example
Rumor Routing - Attack

- Denial-of-service attack
 - Remove the event information carried by the agent
 - Refuse to forward agents entirely
 - Modify the query or event information in agents

- Selective forwarding attack
 - The intersection must occur between the adversary and BS
 - Make tendrils that make many routes via the adversary
 - To make it, forward multiple copies to multiple neighbors
 - To enlarge it, change TTL to max and hop count to 0
 - Create wormhole and use Sybil attack to maximize the probability
Rumor Routing - Attack - DoS
Rumor Routing - Attack - Selective Forwarding
Energy Conserving Topology Maintenance

- Sensor networks in hard to reach areas (ex: volcano)
 - Difficult to replace the batteries
 - Difficult to add new ones

- Solution: deploy more sensors than needed

- Protocols that adaptively decide which nodes are active
 - Geographic Adaptive Fidelity (GAF)
 - SPAN
Geographic Adaptive Fidelity (GAF)

- Place nodes into virtual “grid squares”

- Grid Square
 - according to geographic location and expected radio range
 - Any pair of nodes in adjacent grid squares are able to communicate
 - Attempt to reach a state: only one active node in each grid square
Three States of Nodes in GAF

- Three States of node
 - Sleeping: turn off the radio
 - Discovery: probe the network to determine the node is needed
 - Active: participate in routing

- Rank
 - Nodes are ranked with **current state** and **expected life time**
 - Higher ranker will be in **active** state and **participate** in routing

- State transition of node

 ![State transition diagram]

 - Receive a discovery message with **higher ranking**
 - I’m the **higher ranker**
 - After some period of time
GAF - Attack

- Selective forwarding attack
 - periodically broadcasting high ranking discovery messages
 - Other nodes in its grid will be disabled

- Sybil attack + HELLO flood attack
 - With a loud transmitter, all grid will choose non-existent node
SPAN

- Coordinators maintains the routing fidelity

- States of node
 - Sleep: power saving mode
 - Coordinator: stay awake continuously while the remaining nodes go into sleep mode
 - Periodically send HELLO message to determine the new state
 - HELLO message: current status, current neighbors, current coordinators

- Eligible to become a coordinator
 - When two of its neighbors cannot reach other directly or via one or two coordinators
 - High utility and energy has prior to become a coordinator
SPAN - Example
SPAN - Attack

- Prevent nodes from becoming coordinators when they should

- To enable a selective forwarding attack, just scale down
Countermeasures

- Outsider attacks and link layer security
- The Sybil attack
- Hello flood attacks
- Wormhole and sinkhole attacks
- Leveraging global knowledge
- Implementation considerations for Sybil attack defenses
- Selective forwarding
- Authenticated broadcast and flooding
- Ultimate limitations of secure multi-hop routing
Outsider Attacks and Link Layer Security

- To prevent the majority of outsider attacks
 - Link layer encryption
 - Authentication mechanisms using a globally shared key
 - Monotonically increasing counter for each link

- Prevents
 - Spoofing, altering, replaying, Sybil attack
 - Selective forwarding, sinkhole attacks

- Not countered
 - Wormhole attacks, HELLO flood attacks
 - Black hole selective forwarding
 - Insider attacks or compromised nodes
The Sybil Attack

- Using a globally shared key allows an insider to masquerade as any node
- To prevent
 - Verify the identities of all nodes
 - All nodes share a unique symmetric key with a trusted base station
 - Two nodes can verify other’s identity and establish a shared key
 - Needham-Schroeder protocol
 - Allow the communication with the verified neighbors only
 - Restrict the number of neighbors a node is allowed
- Prevents
 - Sybil Attack, eavesdrop, modify any future communications
HELLO Flood Attacks

- Verify the bi-directionality of a link before taking actions

- To prevent
 - The identity verification protocol is sufficient
 - It verifies the bi-directionality of the link
 - The limitation of the # of neighbors reduces the compromised nodes
Wormhole and Sinkhole Attacks

- **Difficult**
 - Wormhole: private, out-of-band channel is invisible
 - Sinkhole: advertised information (ex: energy) is hard to verify

- Protocols that construct a topology initiated by a base station are most susceptible

- **To prevent**
 - Design routing protocols carefully
 - ex) Geographic routing protocols
Leveraging Global Knowledge

- When the network size is limited, global knowledge helps the security

Examples

- Topology Monitor
 - All nodes report their neighbors to the base station, it can map the topology
 - Nodes report periodically to account for small changes (radio interference or node failure)
 - Drastic or suspicious changes might indicate a node compromised

- No advertise location (using restricted structure …)
 - If neighbors’ locations can be derived easily without advertisement, the fake location is prevented
Implementation Considerations for Sybil Attack Defenses

- How can each node get the unique key from the base station?
 - Flood
 - Denial-of-Service attack is available
 - Increase base station tx power to reach every node in a single hop
 - Used for efficient authenticated end-to-end acknowledgements
 - Global time synchronization
Selective Forwarding

- A compromised node near the source or base station has high chances to launch a selective forwarding attack

To prevent

- Multipath routing: route over n paths with completely disjoint
 - Difficult to create
- Multiple Braided paths: no two consecutive nodes on in common
- Dynamically choose next hop: reduce the chances of an adversary gaining complete control of a data flow
Authenticated Broadcast and Flooding

- Broadcast and flooding must be authenticated

- μTESLA is suitable
 - Efficient / Authenticated broadcast and flooding
 - Uses only symmetric key cryptography
 - Minimal packet overhead
 - Requires loose time synchronization

- Flooding
 - Robust: it is hard to prevent a message from reaching every node
 - High energy cost, potential losses (by collision)
 - SPIN, gossiping algorithms can help the downsides
Ultimate Limitations of Secure Multi-hop Routing

- Near the base stations are attractive for compromise

- To prevent
 - Clustering protocol
 - Cluster-heads communicate directly with the base station
 - Randomly rotating set of virtual base stations
 - A multi-hop topology is constructed using the set
 - Virtual base station communicate directly with the real base station
 - The set should be changed frequently
Conclusion

- Secure routing is vital on sensor networks
- Currently proposed routing protocols are insecure
- Careful protocol design is needed
 - **Mote-class outsiders** can be counteracted easily
 - Link layer encryption
 - Authentication
 - Defense against **laptop-class adversaries** and **insiders** are hard