
Quasi-Synchronous Checkpointing: Models,
Characterization, and Classification
D. Manivannan, Member, IEEE, and Mukesh Singhal, Senior Member, IEEE

AbstractÐCheckpointing algorithms are classified as synchronous and asynchronous in the literature. In synchronous checkpointing,

processes synchronize their checkpointing activities so that a globally consistent set of checkpoints is always maintained in the

system. Synchronizing checkpointing activity involves message overhead and process execution may have to be suspended during

the checkpointing coordination, resulting in performance degradation. In asynchronous checkpointing, processes take checkpoints

without any coordination with others. Asynchronous checkpointing provides maximum autonomy for processes to take checkpoints;

however, some of the checkpoints taken may not lie on any consistent global checkpoint, thus making the checkpointing efforts

useless. Asynchronous checkpointing algorithms in the literature can reduce the number of useless checkpoints by making processes

take communication induced checkpoints besides asynchronous checkpoints. We call such algorithms quasi-synchronous. In this

paper, we present a theoretical framework for characterizing and classifying such algorithms. The theory not only helps to classify and

characterize the quasi-synchronous checkpointing algorithms, but also helps to analyze the properties and limitations of the algorithms

belonging to each class. It also provides guidelines for designing and evaluating such algorithms.

Index TermsÐCausality, distributed checkpointing, consistent global checkpoint, failure recovery, fault tolerance, zigzag paths.

æ

1 INTRODUCTION

DURING the execution of a distributed computation,
processes exchange information via messages. The

message exchange establishes causal dependencies among
states of processes.1 The causal dependency among the
states of processes is formally characterized by Lamport's
ªhappened beforeº relation [11]. Informally, a state sq of a
process Pq is causally dependent on a state sp of another
process Pp if a message (or sequences of messages) sent by
Pp after state sp was received by Pq before reaching state sq.

A local checkpoint of a process is a recorded state of the

process. A set of local checkpoints, one from each of the

processes involved in a distributed computation, is called a

consistent global checkpoint if none of them is causally

dependent on any other checkpoint in the set.

Determining consistent global checkpoints has applications

in several areas of distributed system design [9]. Some areas

of application are failure recovery, debugging distributed

software, monitoring distributed events such as in indus-

trial process control, setting distributed breakpoints, and

protocol specification and verification.
In the literature, several checkpointing schemes have been

proposed for distributed systems. These schemes are gen-

erally classified into two categoriesÐsynchronous and asyn-

chronous. In synchronous checkpointing schemes, processes

synchronize their checkpointing activities so that a globally
consistent set of checkpoints is always maintained in the
system [6], [8], [12]. The storage requirement for the
checkpoints is minimum because each process needs to keep
at most two checkpoints (one committed and one possibly
not committed) in stable storage at any given time. Major
disadvantages of synchronous checkpointing are 1) process
execution may have to be suspended during the checkpoint-
ing coordination, as in [8], resulting in performance
degradation and 2) it requires extra message overhead to
synchronize the checkpointing activity.

In asynchronous checkpointing [4], [10], processes take
local checkpoints periodically without any coordination
with each other. This approach allows maximum process
autonomy for taking checkpoints and has no message
overhead for local checkpointing. A process determines
consistent global checkpoints by communicating with other
processes to determine the dependency among local
checkpoints.

In asynchronous checkpointing, it could very well
happen that processes took checkpoints such that none of
the checkpoints lies on a consistent global checkpoint. A
local checkpoint that cannot be part of a consistent global
checkpoint is said to be useless. A local checkpoint that can
be part of a consistent global checkpoint is called an useful
checkpoint. Fig. 1 illustrates a distributed computation in
which two processes take checkpoints asynchronously.
Note that none of the checkpoints taken is useful and all
checkpointing effort is wasted. Fig. 1 shows the worst case
scenario; however, in general, a number of checkpoints will
be useful.

The number of useless checkpoints taken by processes
can be reduced by requiring processes to take communica-
tion induced checkpoints in addition to checkpoints taken
independently [15], [24]. The notion of communication

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 10, NO. 7, JULY 1999 703

. D. Manivannan is with the Computer Science Department, University of
Kentucky, Lexington, KY 40506. Email: manivann@cs.uky.edu.

. M. Singhal is with the Department of Computer and Information Science,
The Ohio State University, Columbus, OH 43210.
Email: singhal@cis.ohio-state.edu.

Manuscript received 4 June 1996; revised 4 May 1997.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number 100220.

1. The state of a process is characterized by the state of its local memory
and a history of activity.

1045-9219/99/$10.00 ß 1999 IEEE

induced checkpoints can be traced back to the notion of
branch recovery points introduced by Kim [7]. The
checkpointing algorithms that require processes to take
communication induced checkpoints are called quasi-syn-
chronous checkpointing algorithms because some check-
pointing activity is triggered by the message pattern and
knowledge gained about the dependency between check-
points of processes. Checkpoints taken by processes
independently are called basic checkpoints and the commu-
nication induced checkpoints are called forced checkpoints.
Some of the advantages of a quasi-synchronous checkpoint-
ing algorithm are that it can reduce the number of useless
checkpoints and advance the recovery line. For example, in
Fig. 1, if each process took a forced checkpoint prior to
receiving every message, then all the checkpoints taken
would be useful.

1.1 Paper Objectives

Quasi-synchronous checkpointing algorithms are attractive
because they can reduce the number of useless checkpoints
which, in turn, helps in bounding rollback distance during
recovery. We provide a theoretical framework for the
characterization and classification of quasi-synchronous
checkpointing algorithms. The characterization and the
classification provide a deeper understanding of the
principles underlying quasi-synchronous checkpointing
algorithms, helping us evaluate such algorithms and
providing guidelines for designing more efficient check-
pointing algorithms. The classification also provides a clear
understanding of the properties of the checkpointing
algorithms belonging to each class.

The rest of the paper is organized as follows. Section 2
provides the background required for the paper. In
Section 3, we provide a characterization of quasi-synchro-
nous checkpointing algorithms. In Section 4, we present a
classification of quasi-synchronous checkpointing algo-
rithms. The merits of the classification are discussed in
Section 5. Section 6 concludes the paper.

2 PRELIMINARIES

2.1 System Model

The distributed computation we consider consists of N
spatially separated sequential processes denoted by
P1; P2; � � � ; PN . The processes do not share a common
memory or a common clock. Message passing is the only
way for processes to communicate with one another. The
computation is asynchronous: Each process progresses at its
own speed and messages are exchanged through reliable

communication channels, whose transmission delays are
finite but arbitrary.

Execution of a process is modeled by three types of

eventsÐthe send event of a message, the receive event of a

message, and an internal event. The states of processes

depend on one another due to interprocess communication.

Lamport's happened before relation [11] on events, ÿ!hb
, is

defined as the transitive closure of the union of two other

relations: ÿ!hb � �ÿ!xo [ÿ!m ��. The ÿ!xo
relation captures the

order in which local events of a process are executed. The

ith event of any process Pp (denoted ep;i) always executes

before the �i� 1�st event: ep;i ÿ!xo
ep;i�1. The ÿ!m relation

shows the relation between the send and receive events of

the same message: If a is the send event of a message and b

is the corresponding receive event of the same message,

then a ÿ!m b.
Each checkpoint taken by a process is assigned a unique

sequence number. The ith �i � 0� checkpoint of process Pp
is assigned the sequence number i and is denoted by Cp;i.
We assume that each process takes an initial checkpoint
before execution begins and a virtual checkpoint after
execution ends. Sometimes, checkpoints are also denoted
by the letters A, B, or C for clarity. The ith checkpoint
interval of process Pp is all the computation performed
between its �iÿ 1�th and ith checkpoints (and includes the
�iÿ 1�th checkpoint, but not the ith).

The send and the receive events of a message M are

denoted respectively by send�M� and receive�M�. So,

send�M� ÿ!hb
Cp;i if message M was sent by process Pp

before taking the checkpoint Cp;i. Also, receive�M� ÿ!hb
Cp;i

if message M was received and processed by Pp before

taking the checkpoint Cp;i. send�M� ÿ!hb
receive�M� for any

message M. Next, we present the definition of a consistent

global checkpoint formally.

Definition 1. A set S � fC1;m1
; C2;m2

; � � � ; CN;mN
g of N

checkpoints, one from each process, is said to be a consistent

global checkpoint2 if, for any message M and for any integer

p; 1 � p � N : receive�M� ÿ!hb
Cp;mp

�)send�M� ÿ!hb
Cq;mq

for some q; 1 � q � N .

2.2 Z-Paths and Their Properties

Netzer and Xu [17] gave a necessary and sufficient
condition for a given set of checkpoints to be part of a
consistent global checkpoint. They introduced the notion of

704 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 10, NO. 7, JULY 1999

Fig. 1. A distributed computation with asynchronous checkpointing.

2. Also called a consistent global snapshot or a consistent cut.

zigzag path, which is a generalization of a causal path3

induced by Lamport's happened before relation. A zigzag
path (or a Z-path for short) between two checkpoints is like
a causal path, but a Z-path allows a message to be sent
before the previous one in the path is received. Formally, a
Z-path between two checkpoints is defined [14], [17] as:

Definition 2. A Z-path exists from Cp;i to Cq;j if

1. p � q and i < j (i.e., the two checkpoints are from the
same process and the former precedes the later) or

2. there exist messages m1;m2; � � � ;mn�n � 1� such that

a. m1 is sent by process Pp after Cp;i,
b. if mk �1 � k < n� is received by Pr, then mk�1 is

sent by Pr in the same or later checkpoint interval
(although mk�1 may be sent before or after mk is
received), and

c. mn is received by Pq before Cq;j.

The following notations are used throughout the paper:

Definition 3. Let A,B be individual checkpoints and R,S be sets
of checkpoints. We define the relations zpe> and cpe> over
checkpoints and sets of checkpoints as follows:

1. A
zpe> B iff a Z-path exists from A to B,

2. A
zpe> S iff a Z-path exists from A to some member of

S,
3. S zpe> A iff a Z-path exists from some member of S to

A, and
4. R

zpe> S iff a Z-path exists from some member of R to
some member of S.

Similarly, A cpe> B iff there exists a causal path from A to B,
and A cpe> S iff a causal path exists from A to some member of
S, etc.

An important property of Z-paths is that it captures the
precise requirement for a set of checkpoints to be a part of a
consistent global checkpoint, as stated in the following
theorem due to Netzer and Xu [17].

Theorem 1. A set of checkpoints S can be extended to a
consistent global checkpoint if and only if S zpe=> S.

Proof. The proof can be found in [17]. tu

Theorem 1 presents the precise condition a set of
checkpoints needs to satisfy in order to be part of a
consistent global checkpoint. The following corollary of
Theorem 1 gives the precise condition for a single
checkpoint to be part of a consistent global checkpoint.

Corollary 1. A checkpoint C can be part of a consistent global
checkpoint if and only if it is not on a Z-cycle.

Proof. Follows from Theorem 1 by taking S � fCg. tu

We first review some of the results in [13], [14] to make
the paper self-contained. Given a set S of checkpoints such
that S zpe=> S, those checkpoints that have no Z-paths from or
to any of the checkpoints in S are possible candidates for

extending S to a consistent global checkpoint. The set of all
such checkpoints is called the Z-cone of S. The set of all
those checkpoints that have no causal path from or to any of
the checkpoints in S is called the C-cone of S. Clearly, the Z-
cone of S is a subset of the C-cone of S. The Z-cone and the
C-cone of a set of checkpoints S are depicted pictorially in
Fig. 2. Formally, the Z-cone and the C-cone of a given set S
can be defined as follows:

Definition 4. Let S be a set of checkpoints such that S zpe=> S.
Then, the Z-cone of S, denoted Z-cone(S), is defined as

Z-cone�S� � fCq;i j �S zpe=> Cq;i� ^ �Cq;i zpe=> S�g:
Similarly, C-cone(S) is defined as

C-cone�S� � fCq;i j �S cpe=> Cq;i� ^ �Cq;i cpe=> S�g:
Given a set of checkpoints S such that S zpe=> S, for each

process not represented in S, if we include in S the first
checkpoint in the Z-cone of S, then the resulting set is
guaranteed to be the minimal consistent global checkpoint
containing S. Likewise, for each process not represented in
S, if we include in S the last checkpoint in the Z-cone of S,
then the resulting set is guaranteed to be the maximal
consistent global checkpoint containing S. The dotted lines
in Fig. 3 pass through the maximal and the minimal
consistent global checkpoints containing the set S. Proofs of
these facts can be found in [13]. Wang [23] discusses the
applications of maximal and minimal consistent global
checkpoints in detail.

3 A CHARACTERIZATION oF QUASI-SYNCHRONOUS

CHECKPOINTING

As we saw earlier (Fig. 1), when processes take checkpoints
asynchronously, some or all of the checkpoints taken may
be useless. In quasi-synchronous checkpointing, processes
take communication-induced checkpoints to reduce the
number of useless checkpoints; the message pattern and
knowledge gained about the dependency between check-
points of processes trigger communication-induced check-
points so that the number of useless checkpoints is
minimized or eliminated. Let us first understand how
checkpoints become useless and how we can convert
useless checkpoints into useful checkpoints.

Definition 5. A noncausal Z-path from a checkpoint Cp;i to a
checkpoint Cq;j is a sequence of messages

m1;m2; � � � ;mn �n � 2�
satisfying the conditions of Definition 2 such that for at
least one i �1 � i < n�, mi is received by some process Pr
after sending the message mi�1 in the same checkpoint
interval.

Thus, noncausal Z-paths are those Z-paths that are not
causal paths; in particular, Z-cycles are noncausal Z-paths.
By Theorem 1, if there exists a noncausal Z-path between
two (not necessarily distinct) checkpoints, then the two
checkpoints together are useless for constructing a consis-
tent global checkpoint. Moreover, noncausal Z-paths
between checkpoints are hard to track on-line and, hence,

MANIVANNAN AND SINGHAL: QUASI-SYNCHRONOUS CHECKPOINTING: MODELS, CHARACTERIZATION, AND CLASSIFICATION 705

3. A causal path from a checkpoint A to a checkpoint B exists if and only
if there exists a sequence of messages m1;m2; � � � ;mn such that m1 is sent
after A;mn is received before B and mi is received by some process before
the same process sends mi�1�1 � i < n�:

the presence of noncausal Z-paths complicates the task of
finding consistent global checkpoints. However, noncausal
Z-paths between checkpoints are preventable if processes
take additional checkpoints at appropriate times. For
example, in Fig. 4, the message sequence m1;m2 constitutes
a noncausal Z-path from C1;1 to C3;1 since m2 is sent before
receiving the message m1 in the same checkpoint interval; if
P2 took a checkpoint A before receiving the message m1 but
after sending the message m2, then this noncausal Z-path
could have been prevented and as a result the checkpoints
C1;1 and C3;1 could have been used to construct the
consistent global checkpoint fC1;1; A; C3;1g. Similarly, the
message sequence m3;m1 is a noncausal Z-path from C2;2 to
itself (in fact, a Z-cycle); this Z-cycle could have been
prevented if process P1 took a checkpoint B after sending
the message m1, but before receiving message m3, which
would have made C2;2 useful for constructing a consistent
global checkpoint (in fact, fB;C2;2; C3;1g would have been
one such consistent global checkpoint).

Thus, even though noncausal Z-paths between check-
points are harmful, they are preventable if processes take
additional checkpoints at appropriate places. Preventing all
the noncausal Z-paths between checkpoints by making

processes take additional checkpoints at appropriate places
not only makes all the checkpoints useful but also facilitates
construction of consistent global checkpoints incrementally
and easily; this is because, in the absence of noncausal Z-
paths, any set of checkpoints that are not pairwise causally
related can be extended to a consistent global checkpoint by
Theorem 1 and causality between checkpoints can be
tracked on-line by using vector timestamps [16], [18] or
similar mechanisms.

Thus, the primary issues involved in designing a quasi-
synchronous checkpointing algorithm are 1) how to
efficiently determine appropriate events for processes to
take communication induced checkpoints so that noncausal
Z-paths can be eliminated and 2) how to minimize the
number of communication induced checkpoints taken.
Depending upon the strategy adopted to address these
issues, noncausal Z-paths between checkpoints can be
prevented to varying degrees. Depending on the degree to
which the noncausal Z-paths are prevented, quasi-synchro-
nous checkpointing algorithms exhibit different properties
and can be classified into various classes. This classification
helps to understand the properties and limitations of
various checkpointing algorithms, which is helpful for

706 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 10, NO. 7, JULY 1999

Fig. 2. The Z-cone and the C-cone of a set of checkpoints S such that S
zpe=> S.

Fig. 3. The minimal and the maximal consistent global checkpoints containing a target set S such that S zpe=> S.

comparing their performance; it also helps in designing
more efficient algorithms. Next, we present a classification
of quasi-synchronous checkpointing.

4 CLASSIFICATION OF QUASI-SYNCHRONOUS

CHECKPOINTING

We classify quasi-synchronous checkpointing algorithms
into three different classes, namely, Strictly Z-Path Free
(SZPF), Z-Path Free (ZPF), and Z-Cycle Free (ZCF). This
classification is based on the degree to which the formation
of noncausal Z-paths are prevented. We present the
properties of the algorithms belonging to each class and
discuss the advantages and disadvantages of algorithms
belonging to one class over the other. We also present the
relationship of the classification to existing work in the
literature.

4.1 Strictly Z-Path Free Checkpointing

Strictly Z-path free checkpointing eliminates all the non-
causal Z-paths between checkpoints altogether and is the
strongest of all the classes. First, we present the definition of
a checkpointing pattern that is strictly Z-path free and then
discuss the advantages and disadvantages of a system that
is strictly Z-path free.

Definition 6. A checkpointing pattern is said to be strictly Z-
path free (or SZPF) if there exists no noncausal Z-path
between any two (not necessarily distinct) checkpoints.

In an SZPF system, since there is no noncausal Z-path, a
message sequence forms a Z-path if and only if it forms a
causal path. The following theorem gives the necessary and
sufficient conditions for a system to be SZPF. This theorem
is helpful in verifying if a given checkpointing algorithm
makes the system SZPF.

Theorem 2. A checkpointing pattern is SZPF if and only if, in
every checkpoint interval, all the message-receive events
precede all the message-send events.

Proof. ()) Suppose there exists a checkpoint interval in
which a message-send event precedes a message-receive
event. In other words, there exists a process Pp and
messages m1 and m2 such that Pp sends m2 and then
receives m1 in the same checkpoint interval. Suppose m1

is sent by Pq after taking checkpoint A and m2 is received
by Pr before taking checkpoint B. Then, the message

sequence m1;m2 forms a noncausal Z-path from A to B
since m2 is sent in the same checkpoint interval before
receiving m1.

This implies that the system is not SZPF. Hence, in
every checkpoint interval of an SZPF system, all the
message-receive events precede all the message-send
events.

(() Conversely, if all message-receive events precede
all the message-send events in each checkpoint interval,
then clearly there is no noncausal Z-path between
checkpoints and, hence, the system is SZPF. tu

From Theorem 2, it is clear that the checkpointing pattern
shown in Fig. 5 is SZPF. In this figure, the forced checkpoint
C2;1 is taken to prevent the noncausal Z-path m2;m5 from
C1;0 to C3;1. Similarly, the forced checkpoint C2;3 is taken to
prevent the noncausal Z-path m3;m6 from C1;1 to C3;2; the
forced checkpoint C1;2 is taken to prevent the noncausal Z-
path m4;m3 (in fact a Z-cycle) from C2;4 to itself. We next
discuss the properties of an SZPF system.

4.1.1 Properties of an SZPF System

An SZPF system has many interesting and desirable
properties. Since an SZPF system does not allow noncausal
Z-paths, Z-cycles do not exist in an SZPF system. Hence,
each checkpoint is useful by Corollary 1. Moreover, absence
of noncausal Z-paths makes construction of consistent
global checkpoints easy because we need to worry about
causal paths only and causal paths are easy to track using
vector timestamps or other similar mechanisms.

In an SZPF system, any pair of checkpoints between
which there is no causal path is useful for constructing a
consistent global checkpoint. In fact, a more general result is
stated in the following theorem. The following theorem not
only presents a necessary and sufficient condition for a
given set of local checkpoints to be part of a consistent
global checkpoint but also provides a method for construct-
ing them incrementally.

Theorem 3. In an SZPF system, a set of checkpoints S can be
extended to a consistent global checkpoint iff S cpe=> S.

Proof. In an SZPF system, for any two checkpoints A and B,
A

cpe> B if and only if A
zpe> B. Hence, for any set of

checkpoints S, S cpe=> S if and only if S zpe=> S. Hence, the
proof follows from Theorem 1. tu

MANIVANNAN AND SINGHAL: QUASI-SYNCHRONOUS CHECKPOINTING: MODELS, CHARACTERIZATION, AND CLASSIFICATION 707

Fig. 4. Noncausal Z-paths.

Thus, in an SZPF system, if S is any set of checkpoints
that are not pairwise causally related (i.e., S cpe=> S), each
process not represented in S is guaranteed to have a
checkpoint A such that A cpe=> S and S

cpe=> A. After adding such
a checkpoint A to S, the resulting set S0 � S [fAg has the
property S0 cpe=> S0. Thus, we can incrementally extend S to a
consistent global checkpoint. Since causality (i.e., cpe=> relation)
can be tracked on-line using vector timestamps or similar
other mechanisms [16], [18], constructing consistent global
checkpoints incrementally using this method is simple and
practical. In a non-SZPF system, however, it is not easy to
construct consistent global checkpoints incrementally due
to the presence of noncausal Z-paths because tracking
noncausal Z-paths on-line is difficult.

In an SZPF system, every Z-path is a causal path and,
hence, Z-cone(S) and C-cone(S) are identical for any
given set of checkpoints S. The fact that the Z-cone(S)
and the C-cone(S) are identical in an SZPF system
facilitates the construction of the maximal and the
minimal consistent global checkpoints containing a given
set S. If S cpe=> S, then by adding to S the latest checkpoint
from each process that is not causally related to any of
the checkpoints in S (i.e., the checkpoints lying on the
trailing edge of the C-cone�S�), we can obtain the
maximal consistent global checkpoint containing S. The
minimal consistent global checkpoint containing S can be
constructed by adding to S the earliest checkpoint from
each process that is not causally related to any of the
checkpoints in S (i.e., the checkpoints lying on the
leading edge of the C-cone�S�).
4.1.2 Relation to Existing Work

The MRS protocol: The MRS protocol of Russel [19] (also
called No-Receive-After-Send (NRAS) by Wang [23]),
which was also independently proposed by Acharya
and Badrinath [1], disallows any message to be received
in any checkpoint interval once a message has been sent
in that checkpoint interval. Thus, all message send events
precede all message receive events in each checkpoint
interval. Hence, it follows from Theorem 2 that the MRS
protocol makes the system SZPF. A distributed computa-
tion taking checkpoints using the MRS protocol is shown
in Fig. 6.

The Checkpoint-After-Send method: In Checkpoint-
After-Send (CAS) method [23], a checkpoint must be
taken after every send event. Thus, any checkpoint
interval can have at most one message-send event and
it must appear at the end of the interval. Hence, CAS
method of checkpointing makes the system SZPF by
Theorem 2. Since MRS protocol allows several message-
send events to take place in the same checkpoint interval,
the CAS method will have higher checkpointing over-
head than the MRS method. However, the CAS check-
pointing method has the following very interesting and
useful property: ªThe set consisting of all the latest
checkpoints of all the processes forms a consistent global
checkpoint.º This property, however, comes at the expense
of high checkpointing overhead.

The Checkpoint-Before-Receive method: In Check-
point-Before-Receive (CBR) method [23], a checkpoint must
be taken before every receive event. Thus, any checkpoint
interval can have at most one message-receive event and it
always appears at the beginning of the interval. Hence, it
makes the system SZPF by Theorem 2. The CAS method
and the CBR method will have the same checkpointing
overhead since the number of checkpoints taken in both
cases is equal to the number of messages. However, in the
CBR method, the latest checkpoints of processes do not
form a consistent global checkpoint.

The Checkpoint-After-Send-Before-Receive method:
In the Checkpoint-After-Send-Before-Receive (CASBR)
method [23], a checkpoint must be taken after every
message-send event and before every message-receive
event and, hence, makes the system SZPF by Theorem 2.
Clearly, in the CASBR method, processes take twice as
many forced checkpoints as in either CAS method or
CBR method.

4.2 Z-Path Free Checkpointing

In an SZPF system, absence of noncausal Z-paths between
checkpoints makes all the checkpoints useful and also
facilitates the construction of consistent global checkpoints
incrementally. We can have these desirable features of an
SZPF system without actually eliminating all noncausal Z-
paths. It turns out that we can get these benefits by
eliminating only those noncausal Z-paths corresponding to

708 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 10, NO. 7, JULY 1999

Fig. 5. An SZPF checkpointing.

which there is no sibling causal path.4 This relaxed
requirement yields the ZPF model defined below.

Definition 7. A checkpointing pattern is said to be Z-path free
(or ZPF) iff for any two checkpoints A and B, A zpe> B iff
A

cpe> B.

Thus, in a ZPF system, even though noncausal Z-paths
may exist between checkpoints, they always have a sibling
causal path and, thus, all such noncausal Z-paths can be
tracked on-line through the corresponding sibling causal
paths. Fig. 7 shows a distributed computation that is ZPF
but not SZPF. In this figure, forced checkpoints are taken to
prevent noncausal Z-paths corresponding to which there
exists no sibling causal path. For example, forced check-
point C1;2 is taken by P1 to prevent noncausal Z-path m3;m2

(in fact, a Z-cycle from C2;3 to itself); forced checkpoint C2;1

is taken by process P2 to prevent the Z-path m1;m4 (a Z-
path from C1;0 to C3;1). However, even though there exists a
noncausal Z-path m2;m5 from C1;1 to C3;2, no forced
checkpoint is taken by process P2 to prevent this Z-path
because there exists a sibling causal path m2;m6.

4.2.1 Properties of a ZPF System

A ZPF system has all the interesting properties of an SZPF
system. In a ZPF system, Z-cycles do not exist because if a
Z-cycle exists then a causal cycle would exist as a sibling;

however, causal cycles cannot exist because an event cannot
happen before itself. Thus, all checkpoints in a ZPF system
are useful. The following theorem gives a necessary and
sufficient condition for a given set of local checkpoints to be
part of a consistent global checkpoint and also provides a
method for constructing them incrementally.

Theorem 4. In a ZPF system, a set of checkpoints S can be
extended to a consistent global checkpoint iff S cpe=> S.

Proof. In a ZPF system, for any two checkpoints A and B,
A

cpe> B if and only if A
zpe> B. Hence, for any set of

checkpoints S, S cpe=> S if and only if S zpe=> S. Hence, the
proof follows from Theorem 1. tu

The following lemma shows that SZPF �) ZPF.

Lemma 1. If a system is SZPF, then it is ZPF, but the converse is
not true.

Proof. In an SZPF system, there is no noncausal Z-path
between any two (not necessarily distinct) checkpoints,
which trivially implies that for any two checkpoints A
and B, A zpe> B iff A cpe> B. Hence, an SZPF system is a ZPF
system. The converse is not true. For example, the
checkpointing pattern in Fig. 7 is ZPF but not SZPF, since
m2;m5 is a noncausal Z-path. tu

It is also easy to see that for any given set of checkpoints
S, the Z-cone(S) and the C-cone(S) are identical in a ZPF
system and, hence, finding the maximal and minimal
consistent global checkpoints containing a target set of

MANIVANNAN AND SINGHAL: QUASI-SYNCHRONOUS CHECKPOINTING: MODELS, CHARACTERIZATION, AND CLASSIFICATION 709

Fig. 7. Checkpointing in ZPF method.

4. If there exists a Z-path from A to B and also a causal path from A to B,
the causal path is called a sibling of the Z-path.

Fig. 6. Checkpointing using MRS protocol.

checkpoints is simple. Thus, a ZPF system has all the

important features of an SZPF systemÐconstructing con-

sistent global checkpoints incrementally is simple and every

checkpoint taken is useful for constructing consistent global

checkpoint. In addition, for a given computation, ZPF

checkpointing is likely to have less checkpointing overhead

than any SZPF checkpointing. This is because in ZPF

checkpointing, processes have to take forced checkpoints

only to prevent noncausal Z-paths corresponding to which

there exists no causal path, whereas in SZPF checkpointing,

processes have to take forced checkpoints to prevent all the

noncausal Z-paths.

4.2.2 Equivalence of RD-Trackable and ZPF Systems

We show that the Rollback Dependency Trackable System

(RD-Trackable System) of Wang [23] is equivalent to the

ZPF system. We define the RD-Trackable system using the

terminology of Z-paths; this definition is equivalent to the

original definition of [23]. Each process Pp maintains a

vector Dp of size N . Entry Dp�p�, initialized to 1, is

incremented every time a new checkpoint is taken and,

thus, always represents the current interval number or

equivalently, the sequence number of the next checkpoint of

Pp; every other entry Dp�q�; q 6� p, is initialized to 0 and

records the highest sequence number of any intervals of Pq
on which Pp's current state transitively depends. When Pp
sends a message M, the current value of Dp is piggybacked

on M. When the receiver Pq receives M, Pq updates its

vector Dq as follows:

Dq�r� :� max�M:D�r�; Dq�r��; 1 � r � N;
where M:D denotes the vector piggybacked on M. When Pq
takes the next checkpoint Cq;j, the value of the vector Dq at

that instant is associated with the checkpoint Cq;j and is

denoted by Cq;j:D; after taking the checkpoint, Dq�q� is

incremented.

Definition 8. A checkpointing pattern is said to satisfy rollback-

dependency trackability (or is RD-trackable) iff for any two

checkpoints Cp;i and Cq;j, Cp;i
zpe> Cq;j if and only if

Cq;j:D�p� � i� 1.

The following theorem establishes the equivalence of the

ZPF system and the RD-trackable system.

Theorem 5. A checkpointing pattern is ZPF if and only if it is

RD-trackable.

Proof. From the definition, it follows that in an RD-

trackable system, for any two checkpoints Cp;i and Cq;j,

Cp;i
zpe> Cq;j if and only if Pq received a message M before

taking the checkpoint Cq;j and M causally depended on a

message sent by Pp in its �i� 1�th checkpoint interval or

later (i.e., after taking the checkpoint Cp;i); in other

words, Cp;i
zpe> Cq;j if and only if a message M that

causally depended on a message sent by Pp after its

checkpoint Cp;i was received by Pq before the checkpoint

Cq;j. Thus, a system is RD-trackable if and only if, for any

two checkpoints Cp;i and Cq;j, Cp;i
zpe> Cq;j()Cp;i cpe> Cq;j,

thus proving the theorem. tu

4.2.3 Relation to Existing Work

Fixed-Dependency-After-Send method: In Fixed-Depen-
dency-After-Send (FDAS) method [23], when a process Pp
sends a message, it piggybacks the current value of the
dependency vector Dp. After the first message send event in
any checkpoint interval of a process Pq, if it receives a
message M, then it processes the message if
M:D�r� � Dq�r� 8r; otherwise, it first takes a checkpoint,
updates its dependency vector Dq and then processes the
message. Thus, in each checkpoint interval, after the first
send event, the dependency vector remains unchanged
until the next checkpoint.

Fixed-Dependency-Interval method: In Fixed-Depen-
dency-Interval (FDI) method [23], when a process Pp sends
a message, it piggybacks the current value of the depen-
dency vector Dp. When a process Pq receives a message M,
Pq processes the message if M:D�r� � Dq�r� 8r; otherwise, it
first takes a checkpoint, updates its dependency vector Dq

and then processes the message. Thus, a process is allowed
to send and receive messages in a checkpoint interval as
long as it will not change the dependency vector in that
interval. Venkatesh et al. [22] proposed a checkpointing
method that is very similar to the FDI method.

Baldoni et al.'s method: Baldoni et al. [2] introduced the
notion of causal doubling which is same as the notion of
causal sibling that we introduced. They [3] also presented a
quasi-synchronous checkpointing algorithm that makes the
system ZPF.

Wang [23] showed that both the FDAS method and the
FDI method are RD-trackable. Hence, from Theorem 5, both
FDAS and FDI methods make the system ZPF. The FDAS,
and FDI methods are not SZPF by Theorem 2.

4.3 Z-Cycle Free Checkpointing

All checkpoints taken in a ZPF system and an SZPF system
are useful. If the objective of a quasi-synchronous check-
pointing algorithm is just to make all checkpoints useful, it
is not necessary to make the system either ZPF or SZPF. To
make all checkpoints useful, it is sufficient to prevent only
Z-cycles, from Corollary 1. Thus, we propose a further
weaker model below where only Z-cycles are prevented.

Definition 9. A checkpointing pattern is said to be Z-cycle free
(or ZCF) iff none of the checkpoints lies on a Z-cycle.

Fig. 8 shows a distributed computation that is ZCF but
not ZPF. In this figure, the forced checkpoint C1;2 is
taken by P1 to prevent the Z-cycle m3;m2 from C2;3 to
itself. The message sequence m1;m4 forms a noncausal Z-
path from C1;0 to C3;1; also, the message sequence m2;m5

forms a noncausal Z-path from C1;1 to C3;2; however, P2

does not take forced checkpoints to prevent these
noncausal Z-paths.

The following theorem gives a sufficient condition for a
system to be ZCF. For any message M, let M:sn denote the
sequence number of the latest checkpoint of the sender of M
that precedes the event send�M�.
Theorem 6. A checkpointing pattern is ZCF if it satisfies the

following condition: For any two checkpoints Cp;i and Cq;j and
a message M sent by Pp and received by Pq,

710 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 10, NO. 7, JULY 1999

M:sn � i�)9 j � i such that �Cq;j ÿ!hb
receive�M��:

(That is, a message sent after taking a checkpoint with
sequence number i is received by a process only after taking a
checkpoint with sequence number � i.)

Proof. The proof is by contradiction. Suppose there exists a
Z-cycle from checkpoint Cp;i to itself. Then, there exists a
message sequence M1;M2; � � � ;Mn�n > 1� such that

1. M1 is sent by process Pp after Cp;i,
2. If Mk �1 � k < n� is received by Pr, then Mk�1 is

sent by Pr in the same or later checkpoint interval
(although Mk�1 may be sent before or after Mk is
received), and

3. Mn i s received by Pp before Cp;i (i .e . ,

receive�Mn� ÿ!hb
Cp;i).

Note that for each k �1 � k < n�, message Mk�1 is sent in

the same or later checkpoint interval in which Mk is

received. Since M1:sn � i, it follows from the condition

given in the theorem and condition 2 above that

Mk:sn � i 8k �1 � k � n�. In particular , Mn:sn � i.
Hence, 9 j � i such that Cp;j ÿ!hb

receive�Mn�, which is

a contradiction to the fact that receive�Mn� ÿ!hb
Cp;i.

Hence, no checkpoint lies on a Z-cycle. Hence, the

theorem. tu
Theorem 6 could be useful in verifying whether a given

checkpointing algorithm makes the system ZCF. However,
note that the condition given in the theorem is only
sufficient but not necessary for a system to be ZCF.

4.3.1 Properties of a ZCF System

An important feature of a ZCF system is that every
checkpoint taken is useful since none of the checkpoints is
on a Z-cycle. It is also easy to see that a ZPF system is a ZCF
system but not conversely. A ZCF system allows the
formation of noncausal Z-paths among checkpoints that
are not Z-cycles; therefore, it has less checkpointing over-
head than a ZPF system. If a Z-path between two
checkpoints is not prevented, the two checkpoints together
cannot be part of a consistent global checkpoint; however,

individually the two checkpoints can still be part of a
consistent global checkpoint if they are not on Z-cycles. For
example, in Fig. 8, the checkpoints C1;1 and C3;2 cannot be
part of a consistent global checkpoint together because of
the Z-path m2;m5; however, the sets fC1;1; C2;1; C3;1g and
fC1;2; C2;2; C3;2g are consistent global checkpoints containing
C1;1 and C3;2, respectively.

Even though every checkpoint in a ZCF system is useful,
constructing a consistent global checkpoint incrementally is
difficult due to the presence of noncausal Z-paths, which
are difficult to track on-line. There is a trade-off between
weaker checkpointing model and the easeness of construct-
ing consistent global checkpoints.

Next, we present some ZCF quasi-synchronous check-
pointing algorithms and explain how they handle the
problem of finding consistent global checkpoints.

4.3.2 Relation to Existing Work

Briatico et al.'s algorithm: The algorithm of Briatico et al.
[5] forces the receiver of a message to take a checkpoint if
the sender's checkpoint interval number tagged with the
message is higher than the current checkpoint interval
number of the receiver. From Theorem 6, this checkpointing
method makes all checkpoints Z-cycle free because a
message sent in a checkpoint interval is never received in
a checkpoint interval with a lower interval number.
Checkpoints with the same sequence number form a
consistent global checkpoint.

Manivannan and Singhal's Algorithm: In the check-
pointing algorithm of Manivannan and Singhal [15], each
process maintains a counter which is periodically incre-
mented. When a process takes a checkpoint, it assigns the
current value of its counter as the sequence number for the
checkpoint. Each message is piggybacked with the sequence
number of the current checkpoint. If the sequence number
accompanying the message is greater than the sequence
number of the current checkpoint of the process receiving
the message, then the receiving process takes a checkpoint
and assigns the sequence number received in the message
as the sequence number to the new checkpoint and then
processes the message. Since a message sent after a
checkpoint with sequence number i is never received by

MANIVANNAN AND SINGHAL: QUASI-SYNCHRONOUS CHECKPOINTING: MODELS, CHARACTERIZATION, AND CLASSIFICATION 711

Fig. 8. Checkpointing in ZCF model.

any process before taking a checkpoint with sequence
number � i, the system is ZCF by Theorem 6. It is proven in

[15] that given a checkpoint Cp;i, the set

Spi � fCq;j j j is the smallest positive integer � ig
is a consistent global checkpoint containing Cp;i.

Both the ZCF checkpointing algorithms presented above
do not actually track Z-cycles to prevent them. They

prevent Z-cycles using a heuristics and as a result they
may force processes to take forced checkpoints even when

there is no chance for the formation of Z-cycles.

5 DISCUSSION

Existing quasi-synchronous checkpointing algorithms in the

literature reduce the number of useless checkpoints by
preventing the formation of noncausal Z-paths between

checkpoints. Based on the extent to which they reduce the
useless checkpoints, we classified them into three classes,

namely, SZPF, ZPF, and ZCF and also showed that SZPF
�) ZPF �) ZCF. Fig. 9 illustrates the relationship among

these three classes. We summarize the advantages of the
three systems below.

SZPF system: Every checkpoint is useful. The absence of
noncausal Z-paths makes the construction of consistent

global checkpoints easy.

ZPF system: Every checkpoint is useful. Existence of a

causal sibling for every noncausal Z-path makes the
construction of consistent global checkpoints easy. Has

the potential to have lower checkpointing overhead than
an SZPF system.

ZCF system: Every checkpoint is useful. Existence of
noncausal Z-paths between checkpoints makes the

construction of consistent global checkpoints difficult.

Has the potential to have lower checkpointing overhead
than a ZPF system.

In terms of finding consistent global checkpoints and
making checkpoints useful for the purpose of constructing
consistent global checkpoint, ZPF system has the same
advantages as an SZPF system. However, an optimal
algorithm that makes the system ZPF is better than any
algorithm that makes the system SZPF because it has the
potential for having less checkpointing overhead. The
impossibility of designing an optimal ZPF quasi-synchro-
nous checkpointing algorithm has been addressed by Tsai
et al. [20].

In a ZCF system, all the checkpoints are useful.
However, due to the presence of noncausal Z-paths
between checkpoints, constructing consistent global check-
points incrementally is difficult. There are no efficient
methods for constructing consistent global checkpoints in a
ZCF system. So, finding a method to construct consistent
global checkpoints efficiently in a ZCF system remains an
open problem. The impossibility of designing an optimal
ZCF quasi-synchronous checkpointing algorithm has been
addressed by Tsai et al. [21].

6 CONCLUSION

When processes take checkpoints independently, some or
all of the checkpoints taken may be useless for the purpose
of constructing consistent global checkpoints. Quasi-syn-
chronous checkpointing algorithms force processes to take
communication induced checkpoints to reduce the number
of useless checkpoints. Depending on the extent to which
the useless checkpoints are reduced, we classified the quasi-
synchronous checkpointing algorithms into various classes.
This classification provides a clear understanding of the
quasi-synchronous checkpointing algorithms. We also dis-
cussed the merits of checkpointing algorithms belonging to
one class over the checkpointing algorithms belonging to
other classes. This classification also helps in designing
more efficient algorithms and evaluating existing algo-
rithms. We pointed out that finding an efficient method to
determine consistent global checkpoints in a ZCF system
remains an open problem.

ACKNOWLEDGMENTS

The authors thank the anonymous referees for their
excellent suggestions for improvement of the paper.

REFERENCES

[1] A. Acharya and B.R. Badrinath, ªCheckpointing Distributed
Applications on Mobile Computer,º Proc. Third Int'l Conf. Parallel
and Distributed Information Systems, Sept. 1994.

[2] R. Baldoni, J.M. Helary, A. Mostefaoui, and M. Raynal, ªCon-
sistent Checkpoints in Message Passing Distributed Systems,º
Rapporte de Recherche no. 2564, INRIA, France, June 1995.

[3] R. Baldoni, J.M. Helary, A. Mostefaoui, and M. Raynal, ªA
Communication Induced Algorithm that Ensures the Rollback
Dependency Trackability,º Proc. 27th Int'l Symp. Fault-Tolerant
Computing, Seattle, Wash., July 1997.

712 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 10, NO. 7, JULY 1999

Fig. 9. Relationship between the various checkpointing models
proposed in the paper.

[4] B. Bhargava and S.R. Lian, ªIndependent Checkpointing and
Concurrent Rollback for Recovery in Distributed SystemsÐAn
Optimistic Approach,º Proc. Seventh IEEE Symp. Reliable Distrib-
uted Systems, pp. 3-12, 1988.

[5] D. Briatico, A. Ciuffoloetti, and L. Simoncini, ªA Distributed
Domino-Effect Free Recovery Algorithm,º Proc. IEEE Fourth Symp.
Reliability in Distributed Software and Database Systems, pp. 207-215,
1984.

[6] L. Moura e Silva and J.G. Silva, ªGlobal Checkpointing for
Distributed Programs,º Proc. Symp. Reliable Distributed Systems,
pp. 155-162, 1992.

[7] K.H. Kim, ªProgrammer-Transparent Coordination of Recovering
Concurrent Processes: Philosophy and Rules for Efficient Im-
plementation,º IEEE Trans. Software Eng., vol. 14, no. 6, pp. 810-
821, June 1988.

[8] R. Koo and S. Toueg, ªCheckpointing and Roll-Back Recovery for
Distributed Systems,º IEEE Trans. Software Eng., vol. 13, no. 1,
pp. 23-31, Jan. 1987.

[9] A.D. Kshemkalyani, M. Raynal, and M. Singhal, ªAn Introduction
to Snapshot Algorithms in Distributed Computing,º Distributed
Systems Eng. J., vol. 2, no. 4, pp. 224-233, Dec. 1995.

[10] K. Tsuruoka, A. Kaneko, and Y. Nishihara, ªDynamic Recovery
Schemes for Distributed Process,º Proc. IEEE Second Symp.
Reliability in Distributed Software and Database Systems, pp. 124-
130, 1981.

[11] L. Lamport, ªTime, Clocks and Ordering of Events in Distributed
Systems,º Comm. ACM, vol. 21, no. 7, pp. 558-565, July 1978.

[12] K. Li, J.F. Naughton, and J.S. Plank, ªCheckpointing Multi-
computer Application,º Proc. 10th Symp. Reliable Distributed
Systems, pp. 2-11, 1991.

[13] D. Manivannan, R.H.B. Netzer, and M. Singhal, ªFinding
Consistent Global Checkpoints in a Distributed Computation,º
Technical Report OSU-CISRC-3/96-TR16, The Ohio State Univ.,
Dept. of Computer and Information Science, 1996.

[14] D. Manivannan, R.H.B. Netzer, and M. Singhal, ªFinding
Consistent Global Checkpoints in a Distributed Computation,º
IEEE Trans. Parallel and Distributed Systems, vol. 8, no. 6, pp. 623-
627, June 1997.

[15] D. Manivannan and M. Singhal, ªA Low-Overhead Recovery
Technique Using Quasi-Synchronous Checkpointing,º Proc. 16th
Int'l Conf. Distributed Computing Sytems, pp. 100-107, Hong Kong,
May 1996.

[16] F. Mattern, ªVirtual Time and Global States of Distributed
Systems,º Parallel and Distributed Algorithms, M. Cosnard et al.,
eds., pp. 215-226. North Holland: Elsevier Science, 1989.

[17] R.H.B. Netzer and J. Xu, ªNecessary and Sufficient Conditions for
Consistent Global Snapshots,º IEEE Trans. Parallel and Distributed
Systems, vol. 6, no. 2, pp. 165-169, Feb. 1995.

[18] M. Raynal and M. Singhal, ªLogical Time: Capturing Causality in
Distributed Systems,º Computer, vol. 29, no. 2, pp. 49-56, Feb. 1996.

[19] D. Russel, ªState Restoration in Systems of Communicating
Processes,º IEEE Trans. Software Eng., vol. 6, no. 2, pp. 183-194,
1980.

[20] J. Tsai, S.-Y. Kuo, and Y.-M. Wang, ªTheorectical Analysis for
Communication-Induced Checkpointing Protocols with Rollback-
Dependency Trackability,º IEEE Trans. Parallel and Distributed
Systems, vol. 9, no. 10, pp. 963-971, Oct. 1998.

[21] J. Tsai, Y.-M. Wang, and S.-Y. Kuo, ªEvaluation of Domino-
Free Communication-Induced Checkpointing Protocols,º Re-
search Report MSR-TR-98-43, Microsoft Corp., http://
www.research.microsoft.com/scripts/pubdb/trpub.asp, Sept.
1998.

[22] K. Venkatesh, T. Radhakrishnan, and H.F. Li, ªOptimal Check-
pointing and Local Encoding for Domino-Free Rollback Recov-
ery,º Information Processing Letters, vol. 25, pp. 295-303, July 1987.

[23] Y.-M. Wang, ªConsistent Global Checkpoints that Contain a Given
Set of Local Checkpoints,º IEEE Trans. Computers, vol. 46, no. 4,
pp. 456-468, Apr. 1997.

[24] J. Xu and R.H.B. Netzer, ªAdaptive Independent Checkpointing
for Reducing Rollback Propagation,º Proc. Fifth IEEE Symp.
Parallel and Distributed Processing, Dec. 1993.

D. Manivannan received a BSc degree in
mathematics with special distinction from the
University of Madras, India. He received an MS
degree in mathematics and an MS degree in
computer science from The Ohio State Univer-
sity, Columbus, in 1992 and 1993, respectively.
He received his PhD degree in computer
science from The Ohio State University in 1997.

Dr. Manivannan is currently an assistant
professor of computer science at the University

of Kentucky, Lexington. Dr. Manivannan's research interests include
distributed systems, operating systems, mobile computing systems, and
interprocess communication in parallel architectures. Dr. Manivannan is
a member of the ACM, the IEEE, and the IEEE Computer Society.

Mukesh Singhal received a Bachelor of En-
gineering degree in electronics and communica-
tion engineering with high distinction from the
University of Roorkee, India, in 1980 and a PhD
degree in computer science from the University
of Maryland, College Park, in May 1986. He is
an associate professor of computer and informa-
tion science at The Ohio State University,
Columbus. His current research interests in-
clude operating systems, distributed systems,

mobile computing, high-speed networks, computer security, and
performance modeling. He has published more than 100 refereed
articles in these areas. He has coauthored two books titled ªAdvanced
Concepts in Operating Systemsº (McGraw-Hill, 1994), and ªReadings in
Distributed Computing Systemsº (IEEE CS Press, 1993). He is currently
the program director of the Operating Systems and Compilers Program
at the U.S. National Science Foundation. He is a senior member of the
IEEE.

MANIVANNAN AND SINGHAL: QUASI-SYNCHRONOUS CHECKPOINTING: MODELS, CHARACTERIZATION, AND CLASSIFICATION 713

